Harmonic analysis on the finite symmetric space GL(n, K)GL(1, K) × GL(n − 1, K)
نویسندگان
چکیده
منابع مشابه
Finite arithmetic subgroups of GLn
We discuss the following conjecture of Kitaoka: if a finite subgroup G of GLn(OK) is invariant under the action of Gal(K/Q) then it is contained in GLn(K ). Here OK is the ring of integers in a finite, Galois extension K of Q and K ab is the maximal, abelian subextension of K. Our main result reduces this conjecture to a special case of elementary abelian p−groups G. Also, we construct some new...
متن کاملCRITICAL VALUES OF RANKIN–SELBERG L-FUNCTIONS FOR GLn ×GLn−1 AND THE SYMMETRIC CUBE L-FUNCTIONS FOR GL2
In a previous article [35] an algebraicity result for the central critical value for L-functions for GLn × GLn−1 over Q was proved assuming the validity of a nonvanishing hypothesis involving archimedean integrals. The purpose of this article is to generalize [35, Thm. 1.1] for all critical values for L-functions for GLn×GLn−1 over any number field F while using the period relations of [37] and...
متن کاملShintani Cocycles on GLn
The aim of this paper is to define an n− 1-cocycle σ on GLn(Q) with values in a certain space D of distributions on Af \ {0}. Here Af denotes the ring of finite adèles of Q, and the distributions take values in the Laurent series C((z1, . . . , zn)). This cocycle can be used to evaluate special values of Artin L-functions on number fields at negative integers. The construction generalizes that ...
متن کاملGEOMETRY OF 1-TORI IN GLn
We describe the orbits of the general linear group GL(n, T ) over a skew field T acting by simultaneous conjugation on pairs of 1-tori, i.e., subgroups conjugate to diag(T ∗, 1, . . . , 1), and identify the corresponding spans. We also provide some applications of these results to the description of intermediate subgroups and generation. These results were partly superseded by A. Cohen, H. Cuyp...
متن کاملTHE BERNSTEIN CENTER OF THE CATEGORY OF SMOOTH W (k)[GLn(F )]-MODULES
We consider the category of smooth W (k)[GLn(F )]-modules, where F is a p-adic field and k is an algebraically closed field of characteristic ` different from p. We describe a factorization of this category into blocks, and show that the center of each such block is a reduced, `-torsion free, finite type W (k)-algebra. Moreover, the k-points of the center of a such a block are in bijection with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 1995
ISSN: 0019-3577
DOI: 10.1016/0019-3577(95)91240-v